Главная · Бухгалтерия · Мощность эквивалентной дозы гамма излучения. Измерение мэд гамма-излучения. Облучение малыми дозами но длительное время считается намного опаснее, чем облучение большой дозой, но за короткий промежуток времени

Мощность эквивалентной дозы гамма излучения. Измерение мэд гамма-излучения. Облучение малыми дозами но длительное время считается намного опаснее, чем облучение большой дозой, но за короткий промежуток времени

ионизирующих излучений

ФГУП ”ВНИИФТРИ”

______________

_______________2010 год

Методика дозиметрического контроля

гамма-излучения в помещениях

С О Д Е Р Ж А Н И Е

1. Назначение методики

2. Принцип контроля

3. Средства и условия измерений

4.Измерение мощности амбиентного эквивалента дозы на открытой местности

5.Измерение мощности амбиентного эквивалента дозы в помещениях

1. НАЗНАЧЕНИЕ МЕТОДИКИ

Настоящая методика устанавливает порядок и правила выполнения измерений при дозиметрическом контроле гамма-излучения в помещениях, включая рабочие места, а также правила оценки результата контроля, методика в части организации контроля соответствует МУ 2.6.1.715-98 "Проведение радиационно-гигиенического обследования жилых и общественных зданий ". Методика предназначена для использования в аккредитованнойИспытательной лаборатории «Аликом-Плюс» и обеспечивает измерение мощности амбиентного эквивалента дозы (МЭД) фотонного излучения в диапазоне (0,мкЗв/ч с погрешностью (15 – 50) % (Р = 0.95).

2. ПРИНЦИП КОНТРОЛЯ

2.1. Дозиметрический контроль по данной методике основан на измерении надфоновой мощности амбиентного эквивалента дозы, обусловленной гамма-излучением. Процедура контроля включает три этапа:

Измерение МЭД, присущей данной местности на открытой местности, вблизи контролируемого здания (фоновое значение);

Измерение МЭД в помещениях контролируемого здания;

Оценку результата контроля и принятие решения.

2.2. Объект считается годным к эксплуатации, если превышение над фоном местности в контрольных точках не превышает 0,20 мкЗв/ч в соответствии с СП 2.6.1.2523-09 Нормы радиационной безопасности (НРБ-99/2009).

3. СРЕДСТВА И УСЛОВИЯ ИЗМЕРЕНИЙ

3.1. Настоящая методика предполагает применение для измерения МЭД гамма-излучения дозиметров: ДКГ-07Д «Дрозд». Применяемые приборы должны быть поверены в установленном порядке.

3.2. Измерения указанными приборами выполняются в натурных условиях, оговоренных в эксплуатационной документации на приборы:

Температура окружающей среды от минус 10°С до плюс 40°С;

При более низких температурах необходимо использовать утепляющие покрытия приборов и сокращать время пребывания приборов в условиях низких температур. Отличие натурных условий от нормальных должно быть учтено введением дополнительных систематических погрешностей в результатах измерений МЭД.

3.3. К работе допускаются операторы, изучившие настоящую методику, инструкции по эксплуатации применяемых приборов, требования ОСПОРБ-99/2010.

4. ИЗМЕРЕНИЕ МОЩНОСТИ амбиентного ЭКВИВАЛЕНТа ДОЗЫ

НА ОТКРЫТОЙ МЕСТНОСТИ

4.1. Измерение МЭД на открытой местности (фоновой МЭД) включает следующие операции:

Выбор контрольных точек на местности;

Измерение показаний дозиметра в контрольных точках;

Регистрация результатов и последующие действия.

4.2. Для проведения измерений выбираются не менее 5-х контрольных точек, расположенных на ровном участке местности на расстоянии не менее 30 м от близлежащих зданий. При этом следует выбирать участки с естественным покрытием без значительных техногенных воздействий (сады, парки, газоны, пустыри и т. д.)

4.3. Подготовку дозиметра к работе и проверку его работоспособности следует выполнять в соответствии с инструкцией по эксплуатации прибора.

4.4. Фоновую мощность амбиентного эквивалента дозы в каждой контрольной точке (Фj) определяют как среднее арифметическое значение для многократных (7-10) измерений фона.

где j=1,2...n - номер измерения фона в контрольной точке; Ni - показания дозиметра при i-ом измерении. В рабочем протоколе (журнале) регистрируют весь ряд результатов.

4.5. Фоновую мощность амбиентного эквивалента дозы (Dф) определяют как среднее арифметическое значение по контрольным точкам:

, (2)

где m - число контрольных точек.

4.6. Среднеквадратичное отклонение (СКО) результата измерений фона определяют по формуле:

, (3)

где j=1,2...m - номер контрольной точки. В рабочем протоколе измерений МЭД регистрируют весь ряд результатов.

5. ИЗМЕРЕНИЕ МОЩНОСТИ амбиентного

эквивалента ДОЗЫ В ПОМЕЩЕНИИ

5.1. Измерение МЭД в помещении включает следующие операции:

Выбор контрольных точек в помещении;

Подготовка дозиметра к работе;

Измерение МЭД в выбранных контрольных точках помещения;

Обработка результатов;

Определение предельных значений надфоновой МЭД;

Оформление результатов и последующие действия.

5.2. Контрольные точки для измерения МЭД выбираются:

Вдоль каждой из стен в трех точках на расстоянии 0.25 м от стены.

В случаях измерений для целей аттестации рабочих мест добавляются точки определенные как рабочие места.

5.3. Подготовку дозиметра к работе следует выполнить в соответствии с Инструкцией по эксплуатации прибора.

5.4. Мощность амбиентного эквивалента дозы в каждой выбранной контрольной точке Dj определяют как среднее арифметическое значение показаний дозиметра при многократных (n= 7÷10) измерениях:

, (4)

где j=1,2...m - номер контрольной точки; Ni - показания дозиметра в контрольной точке. В рабочем протоколе (журнале) регистрируют весь ряд результатов, m - число контрольных точек.

5.5. Обработка результатов дозиметрических измерений включает определение:

Превышение мощности амбиентного эквивалента дозы над фоном местности в каждой контрольной точке .

Суммарной неопределенности результата измерений надфоновой МЭД при Р=0,95 для каждой контрольной точки Dj.

Вычисления следует выполнять по следующим формулам:

, (5)

где Dф -- фоновая МЭД, измеренная в соответствии с п. 4.

5.6. Значение суммарной неопределенности результата измерений надфоновой МЭД (с доверительной вероятностью 0,95) для дозиметров типаДКГ-07Д «Дрозд»:

Δ = 2σФ + 0,3, (6)

5.7. В качестве предельных значений превышения мощности амбиентного эквивалента дозы над фоном местности – DПР принимается значение:

DПР = DНФ, max + Δ , (7)

где DНФ, max – максимальное значение надфоновой МЭД в контрольных точках.

5.8. По результатам дозиметрических измерений составляется рабочий протокол (запись в рабочем журнале) с указанием фоновой МЭД - Dф, номеров контрольных точек (в соответствии с картограммой), значений Dj, DjНФ, D и DПР.

5.9. На основании данных рабочего протокола дозиметрических измерений выполняются следующие действия:

Если для всех контрольных точек Dпр 0,2 мкЗв/час объект признается радиационно чистым и оформляется «Свидетельство радиационного качества» с заключением о радиационной чистоте объекта по форме, установленной для ЛРК (см. «Руководство по качеству);

Если значения Dпр находятся в диапазоне 0,2-0,3 мкЗв/час, то в точке максимальной Dпр следует выполнить более точные измерения МЭД (повторные измерения МЭД при большем числе измерений);

Если значение Dпр > 0,3 мкЗв/час, хотя бы для одной контрольной точки, объект признается радиационно загрязненным, оформляется Акт радиационного контроля по форме, установленной для ЛРК (см. «Руководство по качеству») с результатами дозиметрического контроля и приложением картограммы контрольных точек. После ознакомления заказчика Акт должен быть направлен в региональную службу Роспотребнадзора для принятия решения.

5.10. При измерениях для целей аттестации рабочих мест, измеряется мощность амбиентного эквивалента дозы (МЭД) Dр в контрольных точках определенных, как рабочие места. Dр определяют как среднее арифметическое значение показаний дозиметра при многократных (n= 7÷10) измерениях:

, (8)

Среднеквадратичное отклонение (стандартная неопределенность) результата измерений Dр, определяют по формуле:

, (9)

где р=1,2...m - номер контрольной точки; Di - показания дозиметра в контрольной точке.

В рабочем протоколе (журнале) регистрируют весь ряд результатов.

Значение расширенной неопределенности результата измерений Dр (Р= 0,95):

(10)

ΔО - основная относительная погрешность дозиметров типаДКГ-07Д «Дрозд» ;

ΔЭ – относительная дополнительная погрешность за счет энергетической зависимости чувствительности;

ΔА - относительная дополнительная погрешность за счет анизотропии чувствительности.

5.11. В качестве предельных значений мощности амбиентного эквивалента дозы в каждой контрольной точке определенной, как рабочее место – Dрп, принимается значение:

Dрп =Dр + Δр, (11)

5.12. При гигиенической классификации условий труда значения Dрп используется для оценки значений мощности максимальной потенциальной эффективной дозы мЗв/год в соответствии с Р 2.2.2006-05 «Руководство по гигиенической оценке факторов рабочей среды и трудового процесса. Критерии и классификация условий труда» Приложение 14.

2.1. При прохождении через вещество узкого (парал­лельного) пучка γ-излучения его интенсивность J умень­шается по экспоненциальному закону. Из этого следует, что мощность поглощенной дозы .

где (см 2 /г) - массовый коэффициент истинного по­глощения анергии γ-излучения в данном веществе.

Для узкого пучка моноэнергетического γ-излучения с энергией Е γ (МэВ) имеет место соотношение между мощ­ностью поглощенной дозы в воздухе р (Гр/с) и плотностью потока фотонов φ (см -2 ·с -1):

(1)

где относится к воздуху. В табл. 1.3 приведены линей­ные коэффициенты ослабления μ и массовые коэффициен­ты поглощения μ am для воздуха, воды и свинца.

В случае немоноэнергетического γ-излучения в формулу (1.16) нужно подставить среднюю энергию фотонов E γ и усредненное по энергиям фотонов значение μ am .

Мощность поглощенной дозы направленного пучка γ-излучения в любом веществе, в том числе в мягкой биологи­ческой ткани (воде), определяется при подстановке в (1.16) вместо значения μ am для этого вещества.

Таблица 2.1.

Линейные коэффициенты ослабления μ (см -1)

и массовые коэффициенты поглощения энергии μ am (см 2 /г)

для узкого пучка γ-излучения

2.2. Соотношение между мощностью дозы и активностью источника γ-излучения. Активность радионуклида в ис­точнике измеряется в беккерелях, Бк. Внесистемная единица активности - кюри, 1 Ки = 3,7 10 10 Бк.

Пусть имеется точечный γ-источник активностью А (Бк), испускающий γ-излучение изотропно во все стороны пространства. Найдем мощность поглощенной дозы в (воз­духе на расстоянии R (м) от источника, пренебрегая погло­щением -у-излучения на пути от источника к данной точке. Поскольку плотность потока фотонов от точечного источ­ника убывает обратно пропорционально квадрату расстоя­ния, то мощность поглощенной дозы в воздухе р (Гр/с) равна

Здесь Г СИ - гамма-постоянная радионуклида, выраженная в единицах СИ - Гр·м 2 /(с·Бк). Она показывает, какую мощность поглощенной дозы в воздухе создает нефильтрованное γ-излучение точечного источника активностью 1 Бк на расстоянии 1 м. Величина гамма-постоянной зависит от схемы распада радионуклида и энергии его γ-излучения. В табл. 1.4 (последний столбец) приведены значения Г СИ для некоторых радионуклидов, выраженные в аГр·м 2 /(с·Бк); приставка а (атто) означает 10 -18 .

Таблица 2.2.

Характеристики γ- из лучения некоторых радиоактивных нуклидов

* Радий в равновесии с продуктами распада до RaD.

** То же при платиновом фильтре 0,5 мм.

Пример 1. Определить мощность поглощенной дозы γ-излучения в воздухе на расстоянии 2 м от точечного ис­точника 60 Со активностью 3,7-10 s Бк. Из табл. 14 нахо­дим Г СИ = 84,63·10 -18 Гр·м 2 / (с·Бк). По формуле (1.17): р = 3,7·10 8 ·84,63·10 -18:4 = 7,83·10 -9 Гр/с = 2,8·10 -5 Гр/ч.

Для расчета мощности экспозиционной дозы от точеч­ного γ-источника на практике применяют ионизационную гамма-постоянную.

Ионизационная гамма-постоянная Г радионуклида пока­зывает, какую мощность экспозиционной дозы р экс (Р/ч) создает нефильтрованное γ-излучение точечного изотропно­го источника активностью 1 мКи на расстоянии 1 см. Она выражается во внесистемных единицах - Р-см 2 /(ч-мКи). В табл. 1.4 приведены значения полной ионизационной гам­ма-постоянной Г для некоторых радионуклидов.

Соотношение между мощностью экспозиционной до­зы и активностью точечного γ -источника имеет следующий вид:

Здесь: р экс - мощность экспозиционной дозы (Р/ч), А - активность (мКи), r - расстояние (см), Г - полная иони­зационная гамма-постоянная (Р·см 2 /ч·мКи).

Пример 2. Определить мощность экспозиционной до­зы в условиях предыдущего примера (А = 10 мКи).

Из табл. 1.4 для 60 Со находим Г= 12,91 Р-см 2 /(ч·мКи). Так как А = 10 мКи, г = 200 см, то по формуле (1.18) р Экс = = 10-12,91: 40000 = 0,0032 Р/ч=3,2 мР/ч.

2.3. Для сравнения радиоактивных источников по ионизирующему действию их у-излучения часто используют внесистемную величину - гамма-эквивалент.

Гамма-экивалент источника М (или т Ra) - это ус­ловная масса точечного источника 226 Ra, создающего на данном расстоянии такую же мощность экспозиционной до­зы, как и данный источник [б]. Специальные единицы гам­ма-эквивалента: кг-экв Ra, г-экв Ra, мг-экв Ra.

Миллиграм-эквивалент радия (1 мг-экв Ra) - это гамма-эквивалент радиоактивного источника, Y-излучение которого при тождественных условиях измере­ния создает такую же мощность экспозиционной дозы, что и γ-излучение 1 мг Ra при платиновом фильтре толщиной 0,5 мм.

Установлено, что точечный источник радия массой 1 мг в равновесии с продуктами распада, заключенный в пла­тиновую оболочку толщиной 0,5 мм, создает на расстоянии 1 см мощность экспозиционной дозы 8,4 Р/ч. Следователь­но, такую же мощность дозы создает 1 мг-экв Ra любого радионуклида на расстоянии 1 см.

Поскольку величина М численно равна отношению мощ­ностей экспозиционных доз от данного источника я от 1 мг Ra на одном и том же расстоянии, то применяя формулу (3) для r =1см, получим

М=АГ/8,4, (4)

где М - гамма-эквивалент источника (мг-экв Ra),

А - активность (мКи),

Г - ионизационная гамма-постоянная [Р·см 2 /(ч·мКи)].

Пример 3 . Активность источника 137 Cs равна 10 мКи. Найти гамма-эквивалент источника М. Из табл. 1.4 Г = 3,26 Р·см 2 /(ч·мКи). По (1.19) М= 10-3,26: 8,4 = 3,88 мг-экв Ra.

И, наоборот, если известен гамма-эквивалент источника, то из формулы (3) можно найти активность А данного радионуклида.

Объединяя формулы (2) и (3), получаем соотно­шение между мощностью экспозиционной дозы и гамма-эк­вивалентом точечного источника:

где р экс выражается вР/ч, М - в мг-экв Ra, г - в см.

Умножив величину р экс, рассчитанную по формуле (5), на энергетический эквивалент рентгена 8,73 · 10 -3 Гр/Р, получим мощность поглощенной дозы от источника излучения в воздухе в условиях электронного равновесия, р (Гр/ч).

Пример 4 . Гамма-эквивалент точечного источника М =1 г-эквRa = 10 3 мг-экв Ra. Найти мощность экспозици­онной и поглощенной дозы в воздухе на расстоянии г = = 100 см от источника. По (5) р экс = 8,4-10 3: 10 4 = = 0,84 Р/ч. Мощность поглощенной дозы в воздухе при со­блюдении электронного равновесия р = 0,84 · 8,73· 10 -3 = 7,3 · 10 -3 Гр/ч = 7,3 мГр/ч.

Итак, мощность экспозиционной дозы р экс от точечного γ -источника находят по формулам (2) или (5). Мощ­ность поглощенной дозы в воздухе р определяют либо по формуле (1), либо умножая р экс на η.

2.4. На основании (1.11) между мощностью поглощен­ной дозы γ -излучения в биологической ткани р тк и в воз­духе р в имеется связь:

Для γ-излучения широком диапазоне энергии 0,1 - 3 МэВ отношение коэффициентов μ ат равно 1,09-1,11 (см. табл. 1.3) и, следовательно, с достаточной точностью мож­но принять р тк ≈1,1 р в.

Мощность эквивалентной дозы ^""Излучения в ткани по­лучим, имея в виду, что коэффициент качества /с=1. Для указанного выше диапазона энергии γ-фотонов

р экс = Р тк ·к=1,1· р в, (6)

где р в выражено в Гр/с, р экв - в Зв/с.

Наблюдения за радиоактивностью объектов окружающей среды города выполняются согласно программам и постановлениям Правительства Москвы «О мерах по повышению радиационной безопасности населения г. Москвы».

Система радиационно-экологического мониторинга (РЭМ) охватывает всю территорию г. Москвы (в старых границах по 10 административным округам и территорию «Новой Москвы» Троицкого и Новомосковского административных округов), постоянно совершенствуется и состоит из следующих основных блоков: стационарные средства контроля, мобильные средства контроля, аналитический центр.

Стационарные средства контроля включают в себя наземную режимную сеть наблюдения, сеть стационарных постов контроля воздушного и водного бассейнов, сеть измерителей радиационного фона (рис. 1).

Мобильные средства радиационно-экологического контроля включают автомобильный комплекс для проведения автомобильной гамма съемки по магистралям и улицам города, а также мобильный водный комплекс, который проводит оценку радиационных параметров поверхностных вод и донных отложений реки Москвы.

Ежегодно анализируется более 2500 проб объектов окружающей среды.

Атмосферный воздух. На стационарных постах радиационного контроля (6 постов) контролировалась радиоактивность атмосферных аэрозолей и их выпадений на подстилающую поверхность в течение всего года. Пробы аэрозолей отбирались с помощью ВФУ типа «Тайфун-4» производительностью до 1200 м 3 /ч и «Тайфун-5» производительностью до 3000 м 3 /ч, с осаждением аэрозолей на фильтр ФПП-15-1,5. Атмосферные выпадения собирались в высокобортные кюветы. После недельной экспозиции пробы поступали на радиометрический и γ-спектрометрический анализы.

В таблице 1 представлены результаты измерений объемных активностей радионуклидов в атмосферном воздухе г. Москвы.

Таблица 1. Средние объемные активности радионуклидов в атмосферном воздухе г. Москвы, Бк/м 3

3,3 . 10 -3

3,7 . 10 -7

1,7 . 10 -5

8,9 . 10 -7

8,4 . 10 -7

8,3 . 10 -7

Значения величин объемной активности радионуклидов 226 Ra, 232 Th, 40 К объясняются процессами вторичного пылеподъема (ресуспензии) с поверхности земли.

Объемная активность радионуклида йода 131 I регистрировалась в каждом месяце, но не каждую неделю. Диапазон изменения величин объемной активности 131 I составил от 1,4.10 -7 до 2,8.10 -5 Бк/м 3 при среднем значении 1,9.10 -6 Бк/м 3 .

В таблице 2 представлены результаты измерений плотности радиоактивных выпадений в г. Москве.

Таблица 2. Плотность радиоактивных выпадений в г. Москве, Бк/(м 2 ·год)

Поверхностные воды и донные отложения. Стационарные посты гидросферы (7 постов) расположены на створах рек Москвы, Сетуни, Сходни и Яузы, а также в устье Соболевского ручья, как наиболее вероятного места поступления антропогенных загрязнений.

В таблице 3 представлены результаты измерений объемной активности радиоактивных веществ в воде открытых водоемов г. Москвы.

Таблица 3. Средняя объемная активность радиоактивных веществ в воде открытых водоемов, Бк/л

В таблице 4 представлены результаты измерений средней удельной активности радиоактивных веществ в донных отложениях открытых водоемов г. Москвы.

Таблица 4. Средняя удельная активность радиоактивных веществ в донных отложениях открытых водоемов г. Москвы, Бк/кг

Мощность эквивалентной дозы контролируется сетью измерителей радиационного фона (ИРФ) - 66 датчиков. ИРФ размещены с учетом охвата всех административных округов на магистралях, на крупных предприятиях, в местах большого скопления людей. Получение данных от датчиков проводится круглосуточно.

Кроме того, носимыми приборами в 2014 г. выполнено более 3000 измерений мощности эквивалентной дозы гамма-излучения. Средняя годовая мощность эквивалентной дозы гамма-излучения на территории Москвы составила 0,12 мкЗв/ч, при максимальном значении 0,20 мкЗв/ч (Котельническая наб., 1/15), что соответствует фоновым значениям. В 134 точках режимной сети термолюминесцентными датчиками (ТЛД) определялась интегральная поглощенная доза облучения от внешних источников облучения, которая в 2014 г. составила 0,86 мГр/год.

Радиоактивность почвы определялась в каждом из 134 пунктов контроля по пробам, отобранным с площадок 10х10 м 2 методом “конверта” из 5 см верхнего слоя.

В таблице 5 представлены результаты измерений средней плотности загрязнения техногенными радионуклидами почвы г. Москвы.

Таблица 5. Средняя плотность загрязнения техногенными радионуклидами почвы г. Москвы, Бк/м 2

В таблице 6 представлены результаты измерений удельной активности естественных радионуклидов в почве г. Москвы.

Таблица 6. Средняя удельная активность естественных радионуклидов в почвах г. Москвы, Бк/кг

Радиационные обследования объектов

Проведено обследование на содержание эквивалентной равновесной объемной активности (ЭРОА) радона 215 жилых зданий, 283 зданий детских образовательных учреждения (ДОУ) и зданий школ. Среднегодовые значения ЭРОА изотопов радона в обследованных квартирах и служебных помещениях находилась в пределах от 6 до 104 Бк/м 3 , в подвалах – от 6 до 295 Бк/м 3 .

Результаты радиационно-экологического мониторинга в Троицком и Новомосковском округах («Новая Москва»)

На рис. 2 представлена схема расположения пунктов отбора проб на временной режимной сети радиационного контроля и временной режимной сети наблюдения за водными объектами в Троицком и Новомосковском административных округах г. Москвы

Условные обозначения:

Результаты контроля содержания радионуклидов в пробах почвы и снежного покрова

Основные результаты радиационных параметров отобранных проб почвы и снежного покрова, отобранных в пунктах регулярной режимной сети радиационного контроля, представлены в таблицах 7-8.

Таблица 7. Средняя удельная активность радионуклидов в почвах (грунта), Бк/кг

Территория

отбора проб

А эфф

г. Москва

Таблица 8. Средняя радиоактивность радионуклидов снежного покрова, МБк/км 2

Территория отбора проб

г. Москва

Фактически полученные и приведенные в таблицах величины радиационных параметров проб почвы (грунта) и снежного покрова не превышают значений контрольных уровней, установленных для города Москвы.

Результаты контроля содержания радионуклидов в пробах воды и донных отложениях открытых водоёмов

Основные результаты радиационных параметров отобранных проб поверхностной воды и донных отложений, отобранных в пунктах радиационного контроля на режимных створах водного бассейна ТиНАО города Москвы, представлены в таблице 9.

Таблица 9. Средние значения удельных активностей радионуклидов в поверхностной воде и донных отложениях открытых водоемов

Территория отбора проб

Поверхностные

воды, мБк/кг

Донные отложения, Бк/кг

А эфф

г. Москва

Фактически полученные и приведенные в таблицах величины радиационных параметров проб поверхностной воды и донных отложений открытых водоемов не превышают значений контрольных уровней, установленных для города Москвы.

Результаты контроля содержания радионуклидов в пробах растительности травянистого яруса

Основные результаты радиационных параметров отобранных проб растительности травянистого яруса (трава, листва кустарников и деревьев), отобранных в пунктах регулярной режимной сети радиационного контроля представлены в таблице 10.

Таблица 10. Средняя удельная активность радионуклидов растительности травянистого яруса, Бк/кг

Территория отбора проб

г. Москва

Фактически полученные и приведенные в таблице величины радиационных параметров проб растительности травянистого яруса находятся в пределах значений многолетних наблюдений характерных для города Москвы.

Результаты контроля мощности эквивалентной дозы гамма-излучения и интегральной поглощенной дозы

Мощность эквивалентной дозы гамма-излучения (МЭД ГИ) и интегральные поглощенные дозы на территории округа контролировались:

  • носимыми дозиметрами (дозиметрами - радиометрами) при отборе проб окружающей среды;
  • автоматизированными измерителями радиационного фона (ИРФ) в пунктах АСКРО круглосуточно в режиме реального времени на протяжении всего года;
  • термолюминесцентными дозиметрами (ТЛД) с экспозицией равной шести месяцам для каждой группы дозиметров.

Результаты среднегодовых значений радиационного фона представлены в таблице 11.

Таблица 11. Среднегодовые значения МЭД ГИ, радиационного фона и интегральной поглощенной

Фактически полученные и приведенные в таблицах величины радиационных параметров не превышают значений контрольных уровней, установленных для города Москвы и многолетних наблюдений.

Контроль эквивалентной равновесной объемной активности (ЭРОА) дочерних продуктов радона в помещениях

Обследование помещений государственных бюджетных образовательных учреждений (ГБОУ) в городских округах «Троицк» и «Щербинка» осуществлялось с целью определения в них показателей радиационной безопасности.

В городском округе Троицк обследованы 30 ГБОУ и 30 жилых помещений. Получены следующие результаты: величина измеренной ЭРОА дочерних продуктов радона в воздухе помещений варьируется от 4 до 85 Бк/м 3 ; в подвалах – от 7 до 235 Бк/м 3 . МЭД ГИ в обследованных помещениях изменялась от 0,08 до 0,15 мкЗв/ч.

В городском округе Щербинка обследованы 30 жилых помещений. Получены результаты: величина измеренной ЭРОА радона в воздухе помещений варьируется от 6 до 44 Бк/м 3 ; в подвалах – от 6 до 80 Бк/м 3 . МЭД ГИ в обследованных помещениях изменялась от 0,07 до 0,11 мкЗв/ч. В районе расположения этих зданий произведены замеры содержания радона в атмосфере и МЭД ГИ на прилегающей местности. В атмосферном воздухе на прилегающей к зданиям территории ЭРОА радона не превышает 6 Бк/м 3 , а значения МЭД ГИ изменяются от 0,07 до 0,10 мкЗв/ч.

Фактически полученные величины значений МЭД ГИ и ЭРОА дочерних продуктов радона не превышают нормативных данных и данных многолетних наблюдений.

Результаты автомобильной гамма съемки улично-дорожной сети округа

Методом АГС были обследованы транспортные магистрали и дороги в крупных населённых пунктах ТиНАО, а также городские и сельские поселения, находящиеся на территории этих округов. Полученные результаты обследования транспортных магистралей ТиНАО представлены в таблице 12.

Таблица 12. Результаты обследования транспортных магистралей, находящихся на территории ТиНАО

Значения МЭД ГИ на транспортных магистралях ТиНАО находились в диапазоне 0,08 – 0,27 мкЗв/ч. Среднее значение МЭД ГИ по данным АГС составляет 0,12 мкЗв/ч. Значения, превышающие 0,20 мкЗв/ч, обусловлены спецификой дорожных материалов. Полученные результаты обследования методом АГС дорог в крупных населённых пунктах ТиНАО представлены в таблице 13.

Таблица 13. Результаты обследования дорог в крупных населённых пунктах, находящихся на территории ТиНАО

Значения МЭД ГИ на дорогах в обследованных населённых пунктах находились в диапазоне 0,08 – 0,30 мкЗв/ч. Среднее значение МЭД ГИ по данным АГС составляет 0,14 мкЗв/ч. Значения превышающие 0,20 мкЗв/ч обусловлены спецификой дорожных материалов.

Автомобильная гамма-съёмка в Новомосковском АО проводилась по основным транспортным магистралям в пределах населённых пунктов округа.

Значения МЭД ГИ на маршрутах находились в пределах от 0,08 до 0,28 мкЗв/ч, при среднем значении 0,14 мкЗв/ч. Значения, превышающие 0,20 мкЗв/ч, обусловлены спецификой дорожных материалов. Результаты работ по обследованию методом АГС дорог городских и сельских поселений округа представлены в таблице 14.

Таблица 14. Результаты обследования городских и сельских поселений в Новомосковском АО

Автомобильная гамма-съёмка проводилась по основным транспортным магистралям в пределах населённых пунктов округа и на подъездных дорогах к радиационно-опасным объектам округа.

Значения МЭД ГИ на маршрутах находились в пределах от 0,08 до 0,30 мкЗв/ч, при среднем значении - 0,14 мкЗв/ч. Значения, превышающие 0,20 мкЗв/ч, обусловлены спецификой дорожных материалов. Результаты обследования методом АГС городских и сельских поселений округа приведены в таблице 15.

Таблица 15. Результаты обследования городских и сельских поселений по Троицкому АО

№ п/п

Название поселений, находящихся на территории Троицкого АО

СП Михайлово-Ярцевское

СП Первомайское

СП Новофёдоровское

ГП Киевское

ГО Троицк

СП Щаповское

СП Клёновское

В целом по округу:

Превышений допустимых значений МЭД ГИ и участков техногенного радиоактивного загрязнения на подъездных дорогах к радиационно-опасным предприятиям округа не обнаружено.

Результаты обследования методом АГС подъездных дорог к радиационно-опасным предприятиям приведены в таблице 16.

Таблица 16. Результаты обследования подъездных дорог к радиационно-опасным предприятиям

№ п/п

Наименование предприятий

Максимальные значения МЭД ГИ, мкЗв/ч

Институт земного магнетизма им. Н.В. Пушкова (ИЗМИРАН)

Институт физики высоких давлений им. Л.Ф. Верещагина (ИФВД)

Филиал Физического института РАН (ФИАН) ОКБ (ФИАН)

Контроль мощности эквивалентной дозы и интегральной поглощенной дозы

Мощность эквивалентной дозы и интегральной поглощенной дозы на территории округа контролируется следующими методами:

  • мощность эквивалентной дозы гамма-излучения (МЭД ГИ) - носимыми радиометрами при отборе проб окружающей среды;
  • методом термолюминесцентной дозиметрии (ТЛД) с непрерывной экспозицией по шесть месяцев (интегральная поглощенная доза - Д).

Результаты среднегодовых значений радиационного фона даны в таблице 17.

Таблица 17. Мощность эквивалентной дозы и интегральная поглощенная доза

Территория

МЭД ГИ, мкЗв/ч

Д, мГр/год

г. Москва

Автомобильная гамма-съёмка территории Новомосковского АО

Автомобильная гамма-съёмка проводилась по основным транспортным магистралям, на территориях в пределах населённых пунктов округа и на подъездных путях к радиационно-опасным объектам округа. Значения МЭД ГИ на обследованных маршрутах находились в пределах естественного радиационного фона от 0,06 до 0,25 мкЗв/ч. Значения МЭД ГИ около радиационно-опасных объектов определялись в фиксированных контрольных точках (КТ), расположенных в местах наибольшей потенциальной радиационной опасности. Результаты обследования объектов и магистралей приведены в таблице 18.

Таблица 18. Результаты АГС

Название магистралей и объектов, находящихся на территории НАО

Значения МЭД ГИ, мкЗв/ч

макс.

Киевское ш.

Калужское ш.

Варшавское ш.

Боровское ш.

Трасса между Калужским ш. и Киевским ш. через деревню Летово, Валуево, свхз. Московский

Завод «Мосрентген»

Автомобильная гамма-съёмка территории Троицкого АО

Автомобильная гамма-съёмка проводилась по основным транспортным магистралям, на территориях в пределах населённых пунктов округа и на подъездных путях радиационно-опасным объектам округа. Значения МЭД ГИ на обследованных маршрутах находились в пределах естественного радиационного фона от 0,06 до 0,25 мкЗв/ч. Значения МЭД ГИ около радиационно-опасных объектах определялись в фиксированных контрольных точках (КТ), расположенных в местах наибольшей потенциальной радиационной опасности. Результаты обследования объектов и магистралей приведены в таблице 19.

Таблица 19. Результаты АГС

Название магистралей и объектов, находящихся на территории ТАО

Значения МЭД ГИ, мкЗв/ч

макс.

Киевское ш.

Калужское ш.

Подольское ш.

Боровское ш.

Трасса между Калужским ш. и Киевским ш. через д. Птичное, Первомайское

Трасса между Калужским ш. и Подольским ш. через Щапово, Шаганино

Бетонное кольцо (часть) (трасса А107)

Троицкий институт инновационных и термоядерных исследований (ТРИНИТИ)

Институт земного магнетизма имени Н.В.Пушкова (ИЗМИРАН)

Институт физики высоких давлений имени Л.Ф.Верещагина, Троицкий филиал (ИФВД)

Филиал Физического института РАН (ФИАН), ОКБ ФИАН

Институт спектроскопии РАН (ИСАН)

Институт ядерных исследований РАН (ИЯИ РАН)

Пешеходный радиационный контроль территорий ТиНАО

Проведен пешеходный радиационный контроль территорий, прилегающих к радиационно-опасным объектам, определенным распоряжением Правительства РФ от 14.09.2009 №1311-р (в ред. от 11.04.2011 г.).

Проведен поисковый (пешеходный) радиационный контроль территорий Троицкого и Новомосковского административных округов в городе Москве на площадях 225 000 м 2 и 275 000 м 2 соответственно, общей площадью - 500 000 м 2 .

В Троицком административном округе в ГО Троицк обследованы территории микрорайона Солнечный (между улицами Физическая, Солнечная и Октябрьским проспектом), парка усадьбы Троицкое, территория по Октябрьскому проспекту вокруг Детской школы искусств им. М.И. Глинки. В СП Краснопахорское обследована территория спортивного парка «Красная Пахра».

В Новомосковском административном округе в поселке Мосрентген обследована территория вокруг прудов между улицей Мосрентген (напротив завода Мосрентген) и проездом Героя России Соломатина и территория городского парка по улице Мосрентген.

В ГП Московский обследована территория вблизи деревни Саларьево в 1,2 км от полигона ТБО «Саларьево» рядом с площадкой под строительство электродепо метро «Саларьево».

Максимальное значение МЭД ГИ на обследованной территории равно 0,23 мкЗв/ч, что не превышает допустимых значений по ОСПОРБ 99/2010 п.5.1.6. Источников ионизирующих излучений и локальных радиационных аномалий на обследованной территории не выявлено.

Выводы

  1. Контролируемые радиационные параметры объектов окружающей среды в 2014 году находились в пределах значений, соответствующих радиационному фону, характерному для города Москвы, и не превышали установленных контрольных уровней («Контрольные уровни обеспечения радиоэкологической безопасности населения г. Москвы» М., 2008).
  2. Значения интегральных поглощенных доз находятся в пределах естественных вариаций и не превышают средних доз по городу Москве.
  3. Наличие в Москве большого количества радиационно-опасных объектов и предприятий-владельцев радиоактивных веществ (РВ) и радиоактивных отходов (РАО) создает потенциальную опасность радиационного инцидента.

Заключение

Анализ радиационно-экологической обстановки в Москве за 2014 г. показал, что значения контролируемых радиационных параметров объектов окружающей среды находились в пределах многолетних колебаний техногенного фона столицы.

Все документы, представленные в каталоге, не являются их официальным изданием и предназначены исключительно для ознакомительных целей. Электронные копии этих документов могут распространяться без всяких ограничений. Вы можете размещать информацию с этого сайта на любом другом сайте.

Государственная система санитарно-эпидемиологического нормирования Российской Федерации

2.6.1. Ионизирующее излучение, радиационная безопасность

Проведение радиационно-гигиенического обследования жилых
и общественных зданий

Методические указания

МУ 2.6.1.715-98

Санкт-Петербург

1998

1. Методические указания разработаны Федеральным радиологическим центром Санкт-Петербургского Научно-исследовательского института радиационной гигиены Минздрава РФ (Крисюк Э.М.. Терентьев М.В., Стамат И.П. и Барковский А.Н.) и Департаментом Госсанэпиднадзора Минздрава Российской Федерации (Иванов СИ.. Перминова Г.С. и Соломонова Е.П.)

2. Утверждены и введены в действие Главным Государственным санитарным врачом Российской Федерации 24 августа 1998 года

3. Введены впервые

в которой приняты обозначения:

t 0,95 - значение коэффициента Стьюдента для доверительной вероятности Р = 0,95 (принимают по Приложению 5 в зависимости от числа повторных измерений N в данной точке);

s i - среднеквадратичное отклонение результата измерения от среднего, i которое рассчитывается по результатам всех N повторных измерений в i -той точке по формуле:

(3)

- n -ое измерение МЭД гамма излучения в i -той точке.

При использовании дозиметров интегрального типа EL-1101 (EL-1119) время измерения должно выбираться таким, чтобы случайная составляющая погрешности оценки значения результата измерения не превышала 20%. В этом случае значение считывается со шкалы приборов, а Δ 0 i определяется как произведение на статистическую погрешность измерений, считываемую со шкалы прибора.

С поисковым радиометром (дозиметром) производят обход всех помещений обследуемого здания по периметру каждой комнаты, производят замеры на высоте 1 м от пола на расстоянии 5 - 10 см от стен, и по оси каждой комнаты, производя замеры на высоте 5 - 10 см над полом. При обнаружении локальных повышений показаний используемого прибора, производят поиск максимума и фиксируют в журнале его положение и показания прибора в точке максимума. Кроме того, в журнал заносят максимальные показания прибора в каждом помещении.

Конкретные помещения (квартиры), подлежащие обследованию по , выбираются с учетом результатов проведенного предварительного обследования. При этом обязательно должны обследоваться те из них, в которых зафиксированы максимальные показания поисковых радиометров (дозиметров), а также обнаруженные точки локальных максимумов.

2.7. Измерения МЭД внешнего гамма-излучения в каждом обследуемом помещении выполняют в точке, расположенной в его центре на высоте 1 м от пола, а также в выявленных участках с максимальным значением МЭД гамма- излучения ().

Число повторных измерений N выбирают из условия, чтобы случайная составляющая относительной погрешности оценки среднего значения результата измерения на превышала 20%:

(5)

Здесь: - оценка среднего значения результата измерения в помещении, а случайную составляющую погрешности результата измерения дельта для доверительной вероятности P = 0.95 рассчитывают по формуле:

Δ = t 0.95 × s , мкЗв / ч (6)

в которой приняты такие же обозначения, как и в выражении ()

Результат измерения МЭД гамма-излучения в данном помещении представляют в форме:

МкЗв/ч.(7)

Результаты всех измерений заносятся в рабочий журнал.

где: - измеренное по - значение МЭД гамма-излучения на открытой местности, мкЗв/ч;

Δ σ - суммарная погрешность оценки разности двух величин - и (мкЗв/ч), определяемая из выражения

δ - предел относительной погрешности дозиметра, значение которого принимают по паспорту или свидетельству о поверке;

t 0.95 (ν )- значение коэффициента Стьюдента для доверительной вероятности P = 0.95 при числе наблюдений ν ;

ν - число степеней свободы, рассчитываемое по формуле:

,(10)

в которой n - число повторных наблюдений при измерении и S 0 , а m - то же для и S , соответственно.

При использовании дозиметров типа EL-1101 суммарная погрешность Δ σ определяется по формуле:

,(11)

где s 0 и s - случайные составляющие погрешности результатов измерения и , соответственно, для доверительной вероятности P = 0.95, рассчитываемые дозиметрами EL-1101 и EL-1119.

2.11. Для эксплуатируемого здания вопрос о перепрофилировании его или отдельных его помещений решается в установленном законом порядке (с согласия жильцов или домовладельца и т.п.) местными органами власти по согласованию с территориальным центром госсанэпиднадзора, если максимальное значение измеренной мощности дозы превышает мощность дозы на открытой местности более, чем на 0.6 мкЗв/ч (п. 7.3.4. НРБ-96).

3. Контроль эквивалентной равновесной объемной активности изотопа радона

3.1. Контролируемой величиной в зданиях и сооружениях, согласно НРБ-96 , является среднегодовое значение эквивалентной равновесной объемной активности (ЭРОА ) изотопов радона ( - радона и - торона) в воздухе помещений, равное:

,(12)

где

(13)

(14)

где A RaA , A RaB , A RaC , A ThB , A ThC - объемная активность в воздухе RaA (), RaB (), RaC (), ThB (), ThC (), соответственно, в Бк/м 3 .

3.2. Допускается проводить оценку ЭРОА Rn по результатам измерений объемной активности радона (A Rn ). В этом случае для пересчета измеренных значений А Rn в значении ЭРОА Rn используется коэффициент F Rn , характеризующий сдвиг радиоактивного равновесия между радоном и его дочерними продуктами в воздухе:

.(15)

Значения F Rn определяют экспериментальным путем по результатам одновременных измерений A Rn и ЭРОА Rn . В расчетах по формуле (15) используют значения F Rn , характерные для данного региона, периода года и типа здания. При отсутствии экспериментальных данных о значении F Rn , его принимают равным 0.5.

3.3. В соответствии с пп. 7.3.3 и 7.3.4 НРБ-96 , среднегодовое значение ЭРОА изотопов радона в воздухе помещений проектируемых и сдаваемых в эксплуатацию зданий жилищного и общественного назначения не должно превышать 100 Бк/м 3:

Бк/м 3 ;(16)

а в эксплуатируемых зданиях критерием необходимости проведения защитных мероприятий является невыполнение условия:

Бк/м 3 (17)

3.4. При приемке в эксплуатацию зданий, как правило, не имеется возможности проводить измерения среднегодового значения ЭРОА изотопов радона, поэтому проводят оценку его верхней границы по результатам измерений за период до 1 - 2 недель с учетом коэффициента вариации во времени значения ЭРОА радона V Rn (t) и основных погрешностей применяемых средств измерений:

Бк/м 3 ,()

где Δ Rn и Δ Tn - погрешности определения ЭРОА радона и торона в воздухе соответственно, значения которых рассчитываются по формуле:

Бк/м 3 (19)

в которой ЭРОА i - измеренное значение ЭРОА радона (торона) в воздухе, а δ 0 - основная погрешность измерения, принимаемая по свидетельству о поверке (метрологической аттестации) средства измерения.

Значение коэффициента вариации зависит от геолого-геофизических характеристик грунта под зданием, климатических особенностей региона, типа здания, сезона года, в течение которого проводились измерения, а также от продолжительности измерения (продолжительность пробоотбора) в используемой методике контроля.

В качестве расчетных значений коэффициента вариации при проверке выполнения соотношения () принимают среднее значение V Rn (t) , определенное в процессе специальных исследований в данном регионе в зданиях различного типа, выполненных в разные сезоны года.

При отсутствии данных о фактических значениях V Rn (t) их принимают по таблице 1 в зависимости от продолжительности измерения.

Таблица 1

Продолжительность измерения

≤ 1 час

1 - 3 суток

1 - 2 недели

1 - 3 месяца

Значение V Rn ( t )

Теплый сезон

Холодный сезон

0.95

0.75

то в остальных выбранных для обследования помещениях измерения ЭРОА Tn не проводятся, а проверка выполнения условия () осуществляется с использованием среднего значения ЭРОА торона, вычисленного из сделанных измерений.

Если условие (20) не выполняется, то во всех выбранных для обследования помещениях следует проводить измерения ЭРОА торона, а результаты этих измерений использовать при проверке выполнения условия ().

3.6. В качестве средств контроля ЭРОА радона и торона принимаются инспекционные и интегральные радиометры альфа-активных аэрозолей. Для контроля ЭРОА радона по величине объемной активности радона используются интегральные радиометры радона или мониторы объемной активности радона. При этом следует применять методы и средства измерений, позволяющие определять средние значения объемной активности радона за периоды времени не менее 3 суток. Технические и метрологические характеристики рекомендуемых типов приборов приведены в .

3.8. Измерения в выбранных для обследования помещениях вновь строящихся и реконструированных зданий проводятся после их предварительной выдержки (не менее 12 - 24 часов) при закрытых окнах и дверях (как в помещениях, так и в подъездах) и штатном режиме принудительной вентиляции (при ее наличии). Измерения рекомендуется проводить при наиболее высоком для данной местности барометрическом давлении и слабом ветре.

Измерения с использованием интегральных средств измерений и мониторов радона допускается начинать одновременной с закрытием окон и дверей и запуском вентиляции в штатном режиме.

Установку пассивных интегральных средств измерений ОА радона, мониторов радона и отбор проб воздуха при инспекционных измерениях следует производить в местах с минимальной скоростью воздухообмена, чтобы полученные результаты, по возможности, характеризовали максимальные значения ОА или ЭРОА радона и торона в данном помещении. При измерениях приборы следует располагать: не ниже 50 см от пола, не ближе 25 см от стен и 50 см от нагревательных элементов, кондиционеров, окон и дверей.

В каждом обследуемом помещении (квартире) проводится, как правило, одно измерение ЭРОА изотопов радона. При больших размерах обследуемого помещения количество измерений увеличивается из расчета: одно измерение на каждые 50 квадратных метров.

3.9. В зависимости от результатов измерений и основанной на них оценке верхней границы среднегодового значения ЭРОА изотопов радона принимаются следующие решения:

Помещения отвечают требованиям НРБ-96 ;

Необходимо провести дополнительные исследования (при этом указывается, какие и в каком количестве);

Необходимо проведение защитных мероприятий (по снижению гамма-фона, по снижению ЭРОА радона или оба мероприятия одновременно);

Здание (часть помещений здания) следует перепрофилировать (или снести).

3.9.1. Если во всех обследованных помещениях (не считая подвальных помещений) выполняется условие (), то здание можно считать радонобезопасным и удовлетворяющим нормативу, приведенному в НРБ-96 .

3.9.2. Если в некоторых обследованных помещениях (исключая подвальные) не выполняется условие (), но при этом во всех них выполняется соотношение:

Бк/м 3 ()

то в этих помещениях проводят повторные измерения ОА радона с использованием интегральных средств при большем времени экспозиции (не менее 2 недель) для уменьшения коэффициента вариации V Rn (t) и ЭРОА торона (при заметном его вкладе) с использованием приборов, имеющих меньшее значение основной погрешности, или многократно повторяя измерения (желательно в разное время суток) с последующим усреднением результатов измерений. При этом объем измерений для каждого помещения, как минимум, утраивается.

3.9.2.1. Если в результате повторного обследования оказалось, что в данных помещениях выполнено условие (), то здание считается радонобезопасным.

3.9.3. Если в результате первичного обследования выбранных помещений оказалось, что в ряде из них (исключая подвальные помещения) не выполняются одновременно условия () и (), то проводятся мероприятия по .

3.9.4. После реализации защитных мероприятий в помещениях, где они проводились, осуществляется повторная серия измерений, оценивается верхняя граница среднего значения ЭРОА изотопов радона в данных помещениях (квартирах) и проверяется выполнение для них условия ().

Примечание: Если в качестве одной из защитных мер принято дополнительное оборудование здания специальными вентиляторами или устройствами, то повторная серия измерений проводится при включенных дополнительных устройствах, работающих в штатном режиме.

3.9.5. Если после реализации защитных мероприятий в сдаваемом в эксплуатацию здании условие () не выполняется в ряде помещений (квартир), то решается вопрос о перепрофилировании или реконструкции в целом здания или отдельных его помещений (квартир).

3.10. При проведении обследования в эксплуатируемых зданиях выбор помещений (квартир) для проведения измерений зависит от конкретной ситуации, требований Заказчика (домовладельца, администрации и т.п.) и должен согласовываться с территориальным центром госсанэпиднадзора. При отсутствии каких-либо чрезвычайных ситуаций (наличие информации о локальных источниках радона, прогнозируемом превышении норматива и т.п.) и требований Заказчика обследовать конкретные помещения выбор (в случае обследования здания) подлежащих обследованию помещений (квартир) проводится также, как и при приемке их в эксплуатацию ().

3.11. В эксплуатируемых зданиях, как правило, определение среднегодового значения ЭРОА изотопов радона в выбранных помещениях (квартирах) производится на основе двукратных измерений ОА радона в холодный и теплый сезоны года общей продолжительностью 4 - 6 месяцев с использованием интегральных (трековых или электретных) средств. Учет дочерних продуктов торона производится согласно В том случае, если не выполняется условие (), в данных помещениях проводят многократные измерения ЭРОА торона в разное время суток и время года и оценивают среднее арифметическое значение, которое в дальнейшем используют в качестве оценки среднегодового значения. При этом измерения проводятся при обычном режиме функционирования обследуемых помещений, а при наличии принудительной вентиляции - при штатном режиме ее работы.

3.12. При двукратных измерениях ОА радона по п. 3.11 среднегодовое значение ЭРОА изотопов радона вычисляется как среднее арифметическое. При этом должно соблюдаться условие:

Бк/м 3 (22)

где Δ Rn и Δ Tn - погрешности среднегодовых значений ЭРОА радона и торона, соответственно, учитывающие основную погрешность использованных средств измерений.

В случае однократных измерений ОА (ЭРОА ) радона и ЭРОА торона производят, как и при приемке зданий в эксплуатацию, оценку верхней границы среднегодового значения ЭРОА изотопов радона, используя соотношение (), правая часть которого заменена на 200 Бк/м 3 , и .

Приложение 1

Форма протокола радиационного обследования

(Наименование организации и лаборатории)

_______________________________________________________________________________

(N Аттестата об аккредитации и срок его действия)

Протокол

радиационного обследования N ___ от "___" _______________ 199_ г.

Наименование объекта, его адрес __________________________________________________

_______________________________________________________________________________

Назначение объекта (жилое или общественное здание) ________________________________

Цель обследования объекта:

Приемка в эксплуатацию после завершения строительства;

Приемка в эксплуатацию после реконструкции или капремонта;

Обследование эксплуатируемого здания.

Заказчик_______________________________________________________________________

Проект здания (тип, серия) _______________________________________________________

Характеристика объекта:

Год постройки (реконструкции, капремонта) __________. Количество этажей ______

Тип фундамента ____________________________ Использованные стройматериалы

_________________________________________________________________________

Система вентиляции в здании:

Система вентиляции помещений:

Естественная,- принудительная,- кондиционирование.

Средства измерения:

№ п/п

Тип прибора

Зав. №

№ свидетельства о госпроверке

Срок действия свидетельства

Кем выдано свидетельство

Основная погрешность измерения

Нормативно-методическая документация, использованная при проведении измерений

(МВИ, номер и дата утверждения, кем утверждено) __________________________________

_______________________________________________________________________________

Условия проведения измерений:

Состояние принудительной вентиляции (кондиционеров):

Подвал:- штатный режим работы,- нештатный режим работы.

Остальные помещения здания:

Штатный режим работы,- нештатный режим работы.

Окна, двери помещений и подъездов закрыты,- открыты.

Указывать не обязательно:

Температура воздуха: в помещениях - _________°С, вне здания - ________°С

Барометрическое давление, скорость ветра _______________________________

Результаты измерений:

1. МЭД внешнего гамма-излучения на открытой местности

№ п/п

Место измерения

Зав. № дозиметра

Дота измерения

Среднее значение Н 0, i , мкЗв/ч

Минимальное значение Н 0 , мкЗв/ч

Погрешность Δ 0 , мкЗв/ч

2. МЭД внешнего гамма-излучения в помещениях

№ п/п

Зав. № дозиметра

Дата измерения

Показания поискового прибора *

Результат измерения Н , мкЗв/ч

Погрешность Δ , мкЗв/ч

Н-Н 0 +Δ t , мкЗв/ч.

* приводится без указания погрешности.

3. ЭРОА изотопов радона в воздухе помещений

№ п/п

Место измерения: этаж, № помещения, назначение

Дата (период) измерения

Бк/м 3

Бк/м 3

Максим. среднегодовая С max , Бк/м 3

ЭРОА± Δ Rn

ЭРОА± Δ Tn

Использованное при расчетах C max значение V Rn ( t ) = ___________________________________.

Примечание: .

Лицо, ответственное за проведение обследования:

Должность _____________________

Ф.И.О. ____________________________ Подпись _____________________________

Зав. лабораторией

Ф.И.О. ____________________________ Подпись _____________________________

Приложение 2

(справочное)

Перечень дозиметрических приборов, рекомендуемых для проведения измерений мощности экспозиционной дозы гамма-излучения

N п/п

Тип прибора

Тип детектора

Фирма (страна)

Измеряемые величины

Пределы измерений

Диапазон энергий МэВ

мкР/ч

ДРГ-01Т

Счетчики Гейгера

Россия

МЭксД

0.01-100 мР/ч

0.05-3.0

8 ¸ 9

ДБГ-06Т

Счетчики Гейгера

Россия

МЭквД

0.1-1000 мкЗв/ч

0.05-3.0

8 ¸ 9

МЭксД

0.01-100 мР/ч

1101

Nal (Т l ) сцинтиллятор

АТОМТЕХ (Беларусь)

МЭксД

0.005-100 мР/ч

0.04-3.0

1.5 ¸ 2

МЭквД

0.05-1000 мкЗв/ч

Еср

0.06-1.5 МэВ

1119

Пластиковый сцинтиллятор

АТОМТЕХ (Беларусь)

МэксД

0.005-10(6) мР/ч

0.05-10.0

1.5 ¸ 2

МПД

0.05-10 (7) мкГр/ч

0.05-10.0

МэквД

0.05-10 (7) мкЗв/ч

0.02-10.0

ЭксД

5 мкР-1000 Р

0.05-10.0

пд

0.05 мкГр/ч - 10 Гр

0.05-10.0

ЭквД

0.05 мкЗв/ч - 10 Зв

0.02-10.0

МЭксД - мощность экспозиционной дозы

МЭквД - мощность эквивалентной дозы

МПД- мощность поглощенной дозы в воздухе

ЭксД- экспозиционная доза

ЭквД- эквивалентная доза

ПД- поглощенная доза в воздухе

Еср.- средняя энергия фотонного излучения

Собственный фон и отклик на космическое излучение в единицах МЭксД

Гамма-монитор EL-1101 является высокочувствительным гамма-дозиметром с микропроцессорной обработкой результатов измерений. Он позволяет измерять как мощности экспозиционной и эквивалентной доз, так и среднюю энергию гамма-излучения. Он представляет собой 9-ти канальный сцинтилляционный Na l гамма-спектрометр, откалиброванный как дозиметр с неравномерностью чувствительности во всем энергетическом диапазоне менее 10%. Дозиметр позволяет запомнить до 100 результатов измерений и передавать их непосредственно в ПЭВМ по последовательному интерфейсу RS-232. Прибор имеет поисковый режим, позволяющий использовать его и в качестве поискового радиометра.

Гамма-дозиметр EL-1119 отличается от EL-1101 тем, что имеет пластиковый сцинтиллятор и позволяет измерять мощность экспозиционной, поглощенной в воздухе и эквивалентной дозы рентгеновского и гамма-излучений в диапазоне энергий 0.02 - 10 МэВ. Кроме того, он позволяет измерять и соответствующие дозы. По набору сервисных функций он аналогичен прибору EL-1101.

Приложение 3

(справочное)

Таблица

Перечень средств измерений, рекомендуемых для измерений ОА и ЭРОА радона в воздухе зданий и сооружений

N п/п

Наименование и тип прибора

Тип детектора

Фирма (страна)

Измеряемая величина

Диапазон и погрешность измерений

Автоматизация обработки

1

Интегральные средства измерений ОА и ЭРОА радона в воздухе

Трековый Комплекс "КСИРА 2010Z"

"Радон-Сервис" (Россия)

Интегральная ОА радона в воздухе

Диапазон экспозиций

200 ¸ 3×10 5

Бк×м (-3) ×сутки

с погрешностью ≤ 25%

есть

Трековый Комплекс "ТРЕК-РЭИ-1"

Нитрат-целлюлозный пленочный трековый детектор

НИИЦ РБ КО (Россия)

Интегральная ОА радона в воздухе

Диапазон экспозиций

200 ¸ 3×10 5

Бк×м (-3) ×сутки

с погрешностью ≤ 25%

нет

2

Квазиинтегральные средства измерений ОА и ЭРОА радона в воздухе

Угольные адсорберы

"НИТОН" (Россия)

Квазиинтегральная ОА радона в воздухе

Диапазон измерения ОА радона при экспозиции 1-6 суток от 10 Бк/м 3

нет

Радиометр радона РГГ-01Т

Угольные адсорберы

НИИ ПММ (Россия)

Квазиинтегральная ОА радона в воздухе

Диапазон измерения ОА радона

40 ¸ 2×10 5

Бк/м 3 , с погрешностью ≤ 30%

нет

Радиометр радона РМ-2000 (RTM-2010)

ППД с электростатическим осаждением Ро-218 (Ро-218//Ро-212)

SARAD (Германия) (ЗАО КПЦЕ)

Квазиинтегральная ОА радона и торона в воздухе

Диапазон измерения ОА радона

1 ¸ 1×10 7

есть

3

Средства измерений ОА и ЭРОА радона мгновенного типа

3.1

Радиометры аэрозолей ДПР и ДПТ

3.1.1

Радиометр "РАМОН-01"

Спектрометрический ППД

"Соло" (Казахстан)

ОА аэрозолей ДПР и ДПТ

Диапазон измерения ЭРОА радона

4 ¸ 2×10 5

Бк/м 3 ,с погрешностью ≤30%

есть

3.1.2

Многофункциональный комплекс "Камера", аэрозольный модуль

"НИТОН" (Россия)

ОА аэрозолей ДПР и ДПТ

Диапазон измерения ОА ДПР от 1 Бк/м 3 и более;

АО ДПТ от 0,1 Бк/м 3 и более

нет

3.1.3

Радиометр "РАА-02"

Спектрометрический ППД

СПб НИИРГ (Россия)

ОА аэрозолей ДПР и ДПТ

Диапазон измерения ЭРОА радона

15 ¸ 2×10 5

Бк/м 3 , с погрешностью ≤25%

есть

3.1.4

Радиометр "РГА-01Т"

Сцинтилляционный детектор

НИИ ПММ (Россия)

ОА аэрозолей ДПР и ДПТ

Диапазон измерения ЭРОА радона

15 ¸ 2×10 5

нет

3.2

Радиометры радона

3.2.1

Радиометр радона РРА-01М (и более поздние модификации - 03, О3М)

ППД с электростатическим осаждением

МТМ "Защита" (Россия)

ОА радона в воздухе

Диапазон измерения ОА радона

от 20 до 2×10 5

Бк/м 3 , с погрешностью 40 - 20%

(есть в более поздних моделях)

3.2.2

Многофункциональный комплекс "Камера"

Угольные адсорберы

"НИТОН" (Россия)

ОА радона в воздухе

Диапазон измерения ОА радона от 10 Бк/м 3 и более

нет

3.2.3

Радиометр радона РГГ-01Т

Угольные адсорберы

НИИ ПММ (Россия)

ОА радона в воздухе

Диапазон измерения ОА радона

40¸ 2×10 5

Бк/м 3 , с погрешностью ≤30%

нет

3.2.4

Радиометр радона RM-2000 (RTM-2010)

ППД с электростатическим осаждением

SARAD (Германия) (ЗАО КПЦЕ)

Квазиинтегральная OA радона и торона в воздухе

Диапазон измерения ОА радона

1 ¸ 1×10 7

Бк/м 3 , погрешность зависит от времени измерения

есть

4

Мониторы радона и аэрозолей ДПР в воздухе

Радон-монитор " Alpha GUARD PQ 2000"

Импульсная ионизационная камера с 3d-спектрометрической обработкой сигнала

Непрерывное измерение ОА

Диапазон измерения ОА радона

2¸ 2×10 6

Бк/м 3 , с погрешностью ≤10% (время измерения на уровне 2 Бк/м 3 – не менее 24 ч)

есть

Радон-монитор " Alpha GUARD PQ 2000- T & N "

Детектор по п. 3.1 с TTL -входом и аэрозольным модулем "WLM-02T&N"

"Genitron Instrument" (Германия )

Непрерывное измерение ОА радона, температуры, давления и относит. влажности воздуха

Диапазон измерения по ОА в соответствии с п. 4.1. Диапазон измерения ЭРОА радона

5¸ 2×10 5

Бк/м 3 , с погрешностью ≤10%

есть

Радон-монитор " Alpha GUARD PQ 2000- S " в комплекте с почвенным зондом "Soil-Kit", глубина отбора проб 20 - 100 см

Импульсная ионизационная камера с 3d-спектрометрической обработкой сигнала

"Genitron Instrument" (Германия )

Непрерывное измерение ОА радона, температуры, давления и относит. влажности воздуха

Диапазон измерения ОА радона в почвенном воздухе

1000 ¸ 2×10 6

Бк/м 3 , с погрешностью ≤10% (время 1 измерения не более 15 – 20 минут)

есть

Монитор радона и ДПР серии EQF-30хх

р адон ППД с электростатическим осаждением ; связанная и свободная фракции ДПР

SARAD (Германия) (ЗАО КПЦЕ)

ОА радона и ДПР в воздухе; возможно также измерение ОА торона

Диапазон измерения ОА радона и каждого из ДПР

5 ¸ 1×10 7

Бк/м 3 , с погрешностью, зависящей от времени измерения

есть

Средства измерений данного типа, кроме основной, могут иметь дополнительную погрешность, значение которой зависит главным образом от относительной влажности воздуха в контролируемом помещении. Кроме того, на результаты измерений может оказывать существенное влияние характер измерения ОА радона в помещении, причем связанная с этим дополнительная погрешность контролю практически не поддается.

Приложение 4

Оценка потенциала радоноопасности территорий

Оценка потенциальной радоноопасности территории застройки вблизи обследуемого здания определяется следующими факторами, перечисленными ниже в порядке убывания своей значимости:

- ЭРОА или ОА изотопов радона в принимаемых в эксплуатацию или эксплуатируемых зданиях, расположенных на данной территории застройки вблизи обследуемого здания;

Плотностью потока (интенсивностью эксхаляции) j (мБк/с × м 2) радона с поверхности земли;

- ОА радона С Rn в почвенном воздухе на глубине 1 метра от поверхности земли;

Удельной активностью радия-226 С Ra в слоях пород геологических разрезов.

В таблице 1 дана приближенная оценка потенциальной радоноопасности территорий, разбитой на 3 категории. Допускается производить оценку потенциальной радоноопасности

Таблица 1

ЭРОА изотопов радона, Бк/м 3

Плотность потока радона j , мБк/с×м 2

ОА радона С Rn , кБк/м 3

С Ra , Бк/кг

< 25

< 20

< 10

< 100

25 - 100

20 - 80

10 - 40

100 - 400

> 100

> 80

> 40

> 400

В таблице 1 дана приближенная оценка потенциальной радоноопасности территорий, разбитой на 3 категории. Допускается производить оценку потенциальной радоноопасности территории застройки на основе известного значения одного из четырех факторов, приведенных в таблице 1. Если известны значения двух и более факторов, приведенных в таблице 1, то потенциальную радоноопасность территории вблизи обследуемого здания оценивают по значению, соответствующему наибольшей степени потенциальной радоноопасности.

В таблице 2 приведен минимальный объем радиационного контроля в зависимости от степени потенциальной радоноопасности территории вблизи обследуемого здания, содержания 226 Ra в стройматериалах и засыпке, конструкции фундамента, наличия вентиляции в подвальном пространстве, назначения здания.

Таблица 2

Число помещений на различных этажах (в процентах от их общего числа на каждом этаже), подлежащих обследованию. Для подвального помещения приведено количество точек измерений, которое также зависит и от общей площади подвала.

Факторы, определяющие объем контроля

Подвал

Первый этаж

Верхний этаж

Другие этажи

Столбчатый фундамент без ограждающих подполье конструкций;

Принудительная вентиляция подполья и помещений

Сплошная монолитная фундаментная железобетонная плита;

Отсутствие вентиляции подполья

Отсутствие подпольного пространства;

Обследуются школьные и дошкольные учреждения, односемейные дома и коттеджи

5-10

Приложение 5

(справочное) 1

63.657

13

2.160

3.012

25

2.060

2.787

2

4.303

9.925

14

2.145

2.977

26

2.056

2.779

3

3.182

5.841

15

2.131

2.947

27

2.052

2.771

4

2.776

4.604

16

2.120

2.921

28

2.048

2.763

5

2.571

4.032

17

2.110

2.898

29

2.045

2.756

6

2.447

3.707

18

2.101

2.878

30

2.043

2.750

7

2.365

3.499

19

2.093

2.861

40

2.021

2.704

8

2.306

3.355

20

2.086

2.845

60

2.000

2.660

9

2.262

3.250

21

2.080

2.831

120

1.980

2.617

10

2.228

3.169

22

2.074

2.819

>120

1.960

2.576

11

2.201

3.106

23

2.069

2.807

12

2.179

3.055

24

2.064

2.797

где: N 0 и N k - число повторных измерений на открытой местности (в пункте с наименьшим средним значением МЭД) в k -ом помещении, соответственно.

МУ 2.6.1.715-98

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

2.6.1. Ионизирующее излучение, радиационная безопасность

ПРОВЕДЕНИЕ РАДИАЦИОННО-ГИГИЕНИЧЕСКОГО
ОБСЛЕДОВАНИЯ ЖИЛЫХ И ОБЩЕСТВЕННЫХ ЗДАНИЙ

Realisation of Radiation control in Dwellings and public Buildings

Дата введения 1998-11-01

1. РАЗРАБОТАНЫ Федеральным радиологическим центром Санкт-Петербургского Научно-исследовательского института радиационной гигиены Минздрава РФ (Крисюк Э.М., Терентьев М.В., Стамат И.П. и Барковский А.Н.) и Департаментом Госсанэпиднадзора Минздрава Российской Федерации (Иванов С.И., Перминова Г.С. и Соломонова Е.П.)

2. УТВЕРЖДЕНЫ И ВВЕДЕНЫ В ДЕЙСТВИЕ Главным Государственным санитарным врачом Российской Федерации 24 августа 1998 года

3. Введены впервые

ВВЕДЕНИЕ

ВВЕДЕНИЕ


Настоящие методические указания определяют общий порядок организации и проведения радиационно-гигиенического обследования жилых и общественных зданий, обеспечивающего реализацию требований Федерального Закона "О радиационной безопасности населения" и "Норм радиационной безопасности (НРБ-96) " по ограничению облучения населения за счет природных источников ионизирующего излучения.

Методические указания предназначены для органов и учреждений государственного санитарно-эпидемиологического надзора. Соблюдение требований настоящего документа является обязательным для предприятий и организаций любой ведомственной принадлежности и формы собственности, осуществляющих приемку в эксплуатацию жилых и общественных зданий.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Целью настоящих Методических указаний является унификация методов радиационного контроля, а также обеспечение единых требований к проведению контроля за соблюдением действующих на территории Российской Федерации гигиенических нормативов по ограничению облучения населения за счет природных источников ионизирующего излучения в жилых домах и зданиях социально-бытового назначения как при приемке их в эксплуатацию после завершения строительства (реконструкции или капитального ремонта), так и при их эксплуатации.

1.2. Радиационно-гигиеническое обследование зданий проводится органами госсанэпиднадзора в порядке предупредительного или текущего надзора либо по специальному решению компетентных органов исполнительной власти в порядке, установленном действующим законодательством, либо по заказу (просьбе) юридических лиц или отдельных граждан (жильцов, домовладельцев, сотрудников организаций и т.д.).

1.3. В соответствии с "Нормами радиационной безопасности (НРБ-96) " в помещениях зданий (далее - помещениях) регламентируется мощность дозы гамма-излучения, обусловленного природными радионуклидами, и среднегодовая эквивалентная равновесная объемная активность изотопов радона. Измерения этих радиационных факторов в помещениях проводятся лабораториями радиационного контроля (ЛРК), аккредитованными в установленном порядке в данной области измерений.

1.4. Средства измерения, предназначенные для контроля радиационной обстановки в жилых и других помещениях, должны иметь действующие Свидетельства о государственной метрологической поверке.

1.5. Результаты проведенных измерений оформляются двумя протоколами организацией, проводившей измерения (Приложение 1). Один экземпляр протокола передается Центру госсанэпиднадзора для получения гигиенического заключения. Другой - прилагается к документам по приемке здания в эксплуатацию, либо при обследовании эксплуатируемых зданий передается Заказчику.

Федеральный радиологический Центр СПб НИИ радиационной гигиены (ФРЦ) осуществляет методическое руководство по проведению радиационного контроля в жилых и общественных зданиях в рамках настоящих методических указаний, ежегодно проводит анализ поступивших замечаний и предложений, на основании которых делает обзор с выводами и рекомендациями, и разрабатывает по мере необходимости дополнения и изменения к настоящему документу.

2. КОНТРОЛЬ МОЩНОСТИ ЭКВИВАЛЕНТНОЙ ДОЗЫ ВНЕШНЕГО ГАММА-ИЗЛУЧЕНИЯ

2.1. Контролируемой величиной в зданиях и сооружениях по п. 1.1 является мощность эквивалентной дозы (МЭД) (мкЗв/ч) внешнего гамма-излучения.

Допускается измерять и представлять результаты в единицах мощности экспозиционной дозы гамма-излучения (мкР/ч), связанной с (мкЗв/ч) приближенным соотношением:

2.2. Согласно НРБ-96 (пп. 7.3.3 и 7.3.4) значение МЭД внешнего гамма-излучения в проектируемых новых зданиях жилищного и общественного назначения не должно превышать среднее значение мощности дозы на открытой местности (в районе расположения здания) более чем на 0,3 мкЗв/ч.

2.3. Измерения МЭД внешнего гамма-излучения на открытой местности (мкЗв/ч) производятся вблизи обследуемого здания не менее чем в 5 точках (пунктах), расположенных на расстоянии от 30 до 100 м от существующих зданий и сооружений и не ближе 20 м друг от друга. Точки измерений следует выбирать на участках местности с естественным грунтом, не имеющим локальных техногенных изменений (щебень, песок, асфальт) и радиоактивных загрязнений. При измерениях блок детектирования располагают на высоте 1 м над поверхностью земли. В каждой точке число измерений при использовании дозиметров типа ДРГ-01Т (ДБГ-06Т) должно быть не менее десяти. За результаты измерений в каждой -той точке на открытой местности принимается среднее арифметическое полученных в ней измерений, а случайную составляющую погрешности результата измерения для доверительной вероятности Р=0.95 рассчитывают по формуле:

в которой приняты обозначения:

- значение коэффициента Стьюдента для доверительной вероятности Р=0.95 (принимают по Приложению 5 в зависимости от числа повторных измерений в данной точке);

- среднеквадратичное отклонение результата измерения от среднего, которое рассчитывается по результатам всех повторных измерений в -той точке по формуле:

Ое измерение МЭД гамма-излучения в -ой точке.

При использовании дозиметров интегрального типа ЕL-1101 (ЕL-1119) время измерения должно выбираться таким, чтобы случайная составляющая погрешности оценки значения результата измерения не превышала 20%. В этом случае значение считывается со шкалы приборов, а определяется как произведение на статистическую погрешность измерений, считываемую со шкалы прибора.

2.4. В качестве оценки измеренного значения МЭД гамма-излучения на открытой местности за принимают наименьшее из полученных результатов измерений в -ой точке, а за случайную составляющую погрешности этого результата - соответствующую величину для результата измерений в этой точке.

Результат измерения МЭД гамма-излучения на открытой местности вблизи обследуемого здания представляют в форме:

Примечание: Значение может различаться для разных типов и экземпляров приборов, поэтому эти значения должны быть получены для всех экземпляров приборов, используемых при обследовании здания.

2.5. Объем контроля МЭД внешнего гамма-излучения должен быть достаточным для выявления всех помещений, где значения могут превышать установленный предел, а также для оценки максимальных значений МЭД в типичных помещениях (по функциональному назначению, занимаемой площади, на этаже, в подъезде, а также по типу использованных стройматериалов).

Измерения МЭД гамма-излучения в помещениях сдаваемого в эксплуатацию здания проводятся, как правило, выборочно. Для проведения измерений выбирают типичные помещения, ограждающие конструкции которых изготовлены из различных строительных материалов. При этом в многоэтажных зданиях выбирают помещения, подлежащие обследованию, на каждом этаже.

Число обследуемых помещений выбирается в зависимости от этажности здания, числа помещений (квартир) и других характеристик здания, при этом:

- в односемейных домах, коттеджах (в том числе многоэтажных), школьных и дошкольных учреждениях измерения должны проводиться в каждом помещении;

- в многоквартирных домах при числе квартир до 10 и зданиях социально-бытового назначения при числе помещений до 30 измерения проводятся в каждой квартире для жилых зданий и в каждом помещении для других зданий;

- в многоквартирных домах при числе квартир до 100 и зданиях социально-бытового назначения при числе помещений до 300 измерения проводятся не менее чем в 50% квартир (помещений) в каждом подъезде;

- при числе квартир в жилом здании свыше 100 и числе помещений в здании социально-бытового назначения свыше 300 число обследуемых квартир (помещений) должно быть не менее 25% от их общего числа в каждом из подъездов здания.

При обследовании многоквартирных жилых домов измерения в каждой обследуемой квартире следует проводить не менее чем в двух помещениях, которые должны быть различными по функциональному назначению.

2.6. Для предварительной оценки радиационной обстановки в помещениях с целью выявления возможных локальных источников гамма-излучения проводят предварительное обследование, для проведения которого следует использовать поисковые высокочувствительные гамма-радиометры (индикаторы) типа СРП-68, СРП-88 или высокочувствительные гамма-дозиметры, имеющие поисковый режим работы, типа ЕL-1101 (см. Приложение 2).

С поисковым радиометром (дозиметром) производят обход всех помещений обследуемого здания по периметру каждой комнаты, производя замеры на высоте 1 м от пола на расстоянии 5-10 см от стен, и по оси каждой комнаты, производя замеры на высоте 5-10 см над полом. При обнаружении локальных повышений показаний используемого прибора, производят поиск максимума и фиксируют в журнале его положение и показания прибора в точке максимума. Кроме того, в журнал заносят максимальные показания прибора в каждом помещении.

Конкретные помещения (квартиры), подлежащие обследованию по п. 2.5, выбираются с учетом результатов проведенного предварительного обследования. При этом обязательно должны обследоваться те из них, в которых зафиксированы максимальные показания поисковых радиометров (дозиметров), а также обнаруженные точки локальных максимумов.

2.7. Измерения МЭД внешнего гамма-излучения в каждом обследуемом помещении выполняют в точке, расположенной в его центре на высоте 1 м от пола, а также в выявленных участках с максимальным значением МЭД гамма-излучения (п. 2.6).

Число повторных измерений выбирают из условия, чтобы случайная составляющая относительной погрешности оценки среднего значения результата измерения не превышала 20%:


Здесь: - оценка среднего значения результата измерения в помещении, а случайную составляющую погрешности результата измерения для доверительной вероятности Р=0.95 рассчитывают по формуле:

В которой приняты такие же обозначения, как и в выражении (2).

Результат измерения МЭД гамма-излучения в данном помещении представляют в форме:

Результаты всех измерений заносятся в рабочий журнал.

2.8. В зависимости от результатов оценки максимального значения измеренной мощности дозы в помещении принимаются следующие варианты решений:

2.8.1. Помещение считается удовлетворяющим нормативу, приведенному в НРБ-96, если измеренное значение МЭД в этом помещении (, мкЗв/ч) с учетом погрешности (, мкЗв/ч) удовлетворяет условию:

где: - измеренное по п.п 2.3-2.4 значение МЭД гамма-излучения на открытой местности, мкЗв/ч;

- суммарная погрешность оценки разности двух величин - и (мкЗв/ч), определяемая из выражения

Предел основной относительной погрешности дозиметра, значение которого принимают по паспорту или свидетельству о поверке;

- значение коэффициента Стьюдента для доверительной вероятности Р=0.95 при числе наблюдений ;

- число степеней свободы, рассчитываемое по формуле:


в которой - число повторных наблюдений при измерении и , а - то же для и , соответственно.

При использовании дозиметров типа EL-1101 суммарная погрешность определяется по формуле:

где и - случайные составляющие погрешности результатов измерения и , соответственно, для доверительной вероятности Р=0.95, рассчитываемые дозимерами EL-1101 и ЕL-1119.

2.8.2. Если условие (8) не выполняется из-за большой погрешности оценки значения МЭД, то проводят дополнительные измерения с целью снижения суммарной погрешности измерения , делая большее количество повторных измерений или используя дозиметры, имеющие меньшее значение основной погрешности (см. Приложение 2).

2.8.3. Если по результатам измерений условие (8) не выполняется, то принимаются меры по выявлению причин повышенного значения мощности дозы гамма-излучения и решается вопрос о возможности их устранения, после чего измерения в данном помещении повторяют.

2.8.4. Если проведенные мероприятия не дали необходимого результата, то решается вопрос о перепрофилировании сдаваемых в эксплуатацию зданий (или их отдельных помещений).

2.9. В случае реконструкции или капитального ремонта существующих зданий перед началом проектно-изыскательских работ необходимо провести в них радиационное обследование в объеме, предусмотренном пп. 2.3-2.8, с целью выяснения необходимости проведения защитных мероприятий и внесения их в план работ.

2.10. При проведении обследования в эксплуатируемых зданиях выбор помещений для обследования зависит от конкретной ситуации, требований Заказчика (домовладельца, администрации и т.п.) и должен согласовываться с территориальным центром госсанэпиднадзора. При отсутствии каких-либо чрезвычайных ситуаций (наличие информации о локальных источниках, прогнозируемом превышении норматива и т.п.) и требований Заказчика обследовать конкретные помещения их выбор (при обследовании здания) и обследование проводится также, как и при приемке в эксплуатацию (пп. 2.3-2.8.3).

2.11. Для эксплуатируемого здания вопрос о перепрофилировании его или отдельных его помещений решается в установленном законом порядке (с согласия жильцов или домовладельца и т.п.) местными органами власти по согласованию с территориальным центром госсанэпиднадзора, если максимальное значение измеренной мощности дозы превышает мощность дозы на открытой местности более, чем на 0.6 мкЗв/ч (п. 7.3.4 НРБ-96).

3. КОНТРОЛЬ ЭКВИВАЛЕНТНОЙ РАВНОВЕСНОЙ ОБЪЕМНОЙ АКТИВНОСТИ ИЗОТОПОВ РАДОНА

3.1. Контролируемой величиной в зданиях и сооружениях, согласно НРБ-96, является среднегодовое значение эквивалентной равновесной объемной активности (ЭРОА) изотопов радона (Rn - радона и Rn - торона) в воздухе помещений, равное:

где: и - объемная активность в воздухе RaA (Po), RaB (Pb), RaC (Bi), ThB ( Pb) и ThC (Bi), соответственно, в Бк/м

3.2. Допускается проводить оценку по результатам измерений объемной активности радона (). В этом случае для пересчета измеренных значений в значение используется коэффициент , характеризующий сдвиг радиоактивного равновесия между радоном и его дочерними продуктами в воздухе:

Значения определяют экспериментальным путем по результатам одновременных измерений и . В расчетах по формуле (15) используют средние значения , характерные для данного региона, периода года и типа здания. При отсутствии экспериментальных данных о значении , его принимают равным 0.5.

3.3. В соответствии с пп. 7.3.3 и 7.3.4 НРБ-96, среднегодовое значение ЭРОА изотопов радона в воздухе помещений проектируемых и сдаваемых в эксплуатацию зданий жилищного и общественного назначения не должно превышать 100 Бк/м:

а в эксплуатируемых зданиях критерием необходимости проведения защитных мероприятий является невыполнение условия:

3.4. При приемке в эксплуатацию зданий, как правило, не имеется возможности проводить измерения среднегодового значения ЭРОА изотопов радона, поэтому проводят оценку его верхней границы по результатам измерений за период до 1-2 недель с учетом коэффициента вариации во времени значения ЭРОА радона и основных погрешностей применяемых средств измерений:

где: и - погрешности определения ЭРОА радона и торона в воздухе соответственно, значения которых рассчитываются по формуле:

в которой - измеренное значение ЭРОА радона (торона) в воздухе, а - основная погрешность измерения, принимаемая по свидетельству о поверке (метрологической аттестации) средства измерения.

Значение коэффициента вариации зависит от геолого-геофизических характеристик грунта под зданием, климатических особенностей региона, типа здания, сезона года, в течение которого проводились измерения, а также от продолжительности измерения (продолжительности пробоотбора) в используемой методике контроля.

В качестве расчетных значений коэффициента вариации при проверке выполнения соотношения (18) принимают среднее значение , определенное в процессе специальных исследований в данном регионе в зданиях различного типа, выполненных в разные сезоны года.

При отсутствии данных о фактических значениях их принимают по таблице 1 в зависимости от продолжительности измерения.

Таблица 1

Продолжительность измерения

1-3 сутки

1-2 недели

1-3 месяца

Значение

Теплый сезон

холодный сезон

3.5. Измерения ЭРОА торона проводятся не менее чем в 30% обследуемых помещений. Если по результатам этих измерений выполняется условие:

то в остальных выбранных для обследования помещениях измерения не проводятся, а проверка выполнения условия (18) осуществляется с использованием среднего значения ЭРОА торона, вычисленного из сделанных измерений.

Если условие (20) не выполняется, то во всех выбранных для обследования помещениях следует проводить измерения ЭРОА торона, а результаты этих измерений использовать при проверке выполнения условия (18).

3.6. В качестве средств контроля ЭРОА радона и торона применяются инспекционные и интегральные радиометры альфа-активных аэрозолей. Для контроля ЭРОА радона по величине объемной активности радона используются интегральные радиометры радона или мониторы объемной активности радона. При этом следует применять методы и средства измерений, позволяющие определять средние значения объемной активности радона за периоды времени не менее 3 суток. Технические и метрологические характеристики рекомендуемых типов приборов приведены в Приложении 3.

3.7. Общий объем контроля ЭРОА радона и торона должен быть достаточным. Число и расположение подлежащих обследованию помещений выбирают с учетом категории потенциальной радоноопасности территории застройки вблизи обследуемого здания, удельной активности радия-226 в использованных строительных материалах и засыпке под зданием, конструкции и назначения здания.

3.7.1. Число и расположение подлежащих обследованию помещений выбирают исходя из того, что обследоваться должны, во-первых, все типы помещений, имеющие различное функциональное назначение, и, во-вторых, помещения, расположенные на каждом этаже многоэтажного здания, включая подвал, а при двух и более подъездах - и в каждом подъезде. При этом наибольшую долю от всех выбранных для обследования помещений должны составлять те, в которых люди проводят наибольшее количество времени. В жилых помещениях, если нет на то особых оснований, не обследуются ванные и туалетные комнаты, кухни, кладовые. Объем контроля должен быть согласован с территориальным центром госсанэпиднадзора.

3.7.2. В случае затруднений при выборе объема радиационного контроля рекомендуется использовать критерии, приведенные в Приложении 4.

3.8. Измерения в выбранных для обследования помещениях вновь строящихся и реконструируемых зданий проводятся после их предварительной выдержки (не менее 12-24 часов) при закрытых окнах и дверях (как в помещениях, так и в подъездах) и штатном режиме принудительной вентиляции (при ее наличии). Измерения рекомендуется проводить при наиболее высоком для данной местности барометрическом давлении и слабом ветре.

Измерения с использованием интегральных средств измерений и мониторов радона допускается начинать одновременно с закрытием окон и дверей и запуском вентиляции в штатном режиме.

Установку пассивных интегральных средств измерений ОА радона, мониторов радона и отбор проб воздуха при инспекционных измерениях следует производить в местах с минимальной скоростью воздухообмена, чтобы полученные результаты, по возможности, характеризовали максимальные значения ОА или ЭРОА радона и торона в данном помещении. При измерениях приборы следует располагать: не ниже 50 см от пола, не ближе 25 см от стен и 50 см от нагревательных элементов, кондиционеров, окон и дверей.

В каждом обследуемом помещении (квартире) проводится, как правило, одно измерение ЭРОА изотопов радона. При больших размерах обследуемого помещения количество измерений увеличивается из расчета: одно измерение на каждые 50 квадратных метров.

3.9. В зависимости от результатов измерений и основанной на них оценки верхней границы среднегодового значения ЭРОА изотопов радона принимаются следующие решения:

- помещения отвечают требованиям НРБ-96*;
_____________
* Вероятно ошибка оригинала. Следует читать НРБ-99 . Примечание "КОДЕКС".

- необходимо провести дополнительные исследования (при этом указывается, какие и в каком количестве);

- необходимо проведение защитных мероприятий (по снижению гамма-фона, по снижению ЭРОА радона или оба мероприятия одновременно);

- здание (часть помещений здания) следует перепрофилировать (или снести).

3.9.1. Если во всех обследованных помещениях (не считая подвальных помещений) выполняется условие (18), то здание можно считать радонобезопасным и удовлетворяющим нормативу, приведенному в НРБ-96.

3.9.2. Если в некоторых обследованных помещениях (исключая подвальные) не выполняется условие (18), но при этом во всех них выполняется соотношение.